Posted on

Differential Leukocyte and Endothelial Responses through VEGFR1 and VEGFR2

Purpose: Vascular endothelial growth factor (VEGF) induces angiogenesis and vascular permeability and is thought to be operative in several ocular vascular diseases. The VEGF isoforms are highly conserved among species; however, little is known about their differential biological functions in adult tissue. In the current study, the inflammatory potential of two prevalent VEGF isoform splice variants, VEGF120(121) and VEGF164(165), was studied in the transparent and avascular adult mouse cornea.

Methods: Controlled-release pellets containing equimolar amounts of VEGF120 and VEGF164 were implanted in corneas. The mechanisms underlying this differential response of VEGF isoforms were explored. The response of VEGF in cultured endothelial cells was determined by Western blot analysis. The response of VEGF isoforms in leukocytes was also investigated.

Results: VEGF164 was found to be significantly more potent at inducing inflammation. In vivo blockade of VEGF receptor (VEGFR)-1 significantly suppressed VEGF164-induced corneal inflammation. In vitro, VEGF165 more potently stimulated intracellular adhesion molecule (ICAM)-1 expression on endothelial cells, an effect that was mediated by VEGFR2. VEGF164 was also more potent at inducing the chemotaxis of monocytes, an effect that was mediated by VEGFR1. In an immortalized human leukocyte cell line, VEGF165 was found to induce tyrosine phosphorylation of VEGFR1 more efficiently.

conclusions. Taken together, these data identify VEGF164(165) as a proinflammatory isoform and identify multiple mechanisms underlying its proinflammatory biology.

http://www.iovs.org/content/45/2/368.long

Posted on

Preferential chemotaxis of activated human CD4+ T cells by extracellular cyclophilin A

The recruitment and trafficking of leukocytes are essential aspects of the inflammatory process. Although chemokines are thought to be the main regulators of cell trafficking, extracellular cyclophilins have been shown recently to have potent chemoattracting properties for human leukocytes. Cyclophilins are secreted by a variety of cell types and are detected at high levels in tissues with ongoing inflammation. CD147 has been identified as the main signaling receptor for cyclophilin A (CypA) on human leukocytes. It is interesting that the expression of CD147 is elevated on leukocytes from inflamed tissue, suggesting a correlation among the presence of extracellular cyclophilins, CD147 expression, and inflammatory responses. Thus, cyclophilin-CD147 interactions may contribute directly to the recruitment of leukocytes into inflamed tissues. In the current studies, we show that activated human T lymphocytes express elevated levels of CD147, compared with resting T cells and that these activated T cells migrate more readily to CypA than resting cells. Furthermore, we show that unlike resting CD4+ T cells, the cyclophilin-mediated migration of activated T cells does not require interaction with heparan sulfate receptors but instead, is dependent on CD147 interaction alone. Such findings suggest that cyclophilin-CD147 interactions will be most potent when leukocytes are in an activated state, for example, during inflammatory responses. Thus, targeting cyclophilin-CD147 interactions may provide a novel approach for alleviating tissue inflammation.

http://www.jleukbio.org/content/82/3/613.long

Posted on

CXC Chemokine Receptor 5 Expression Defines Follicular Homing T Cells with B Cell Helper Function

Leukocyte traffic through secondary lymphoid tissues is finely tuned by chemokines. We have studied the functional properties of a human T cell subset marked by the expression of CXC chemokine receptor 5 (CXCR5). Memory but not naive T cells from tonsils are CXCR5+ and migrate in response to the B cell–attracting chemokine 1 (BCA-1), which is selectively expressed by reticular cells and blood vessels within B cell follicles. Tonsillar CXCR5+ T cells do not respond to other chemokines present in secondary lymphoid tissues, including secondary lymphoid tissue chemokine (SLC), EBV-induced molecule 1 ligand chemokine (ELC), and stromal cell–derived factor 1 (SDF-1). The involvement of tonsillar CXCR5+ T cells in humoral immune responses is suggested by their localization in the mantle and light zone germinal centers of B cell follicles and by the concomitant expression of activation and costimulatory markers, including CD69, HLA-DR, and inducible costimulator (ICOS). Peripheral blood CXCR5+ T cells also belong to the CD4+ memory T cell subset but, in contrast to tonsillar cells, are in a resting state and migrate weakly to chemokines. CXCR5+ T cells are very inefficient in the production of cytokines but potently induce antibody production during coculture with B cells. These properties portray CXCR5+ T cells as a distinct memory T cell subset with B cell helper function, designated here as follicular B helper T cells (TFH).

http://jem.rupress.org/content/192/11/1553.long

Posted on

Interleukin-8 Induces Lymphocyte Chemotaxis into the Pleural Space

The pleural space is a potential compartment between the lung and chest wall that becomes filled with fluid and inflammatory cells in a number of respiratory diseases. In an attempt to understand one aspect of the inflammatory process in the pleural space, we compared the responses in three different diseases (congestive heart failure [CHF], tuberculosis [TB], and cancer). Large concentrations of interleukin-8 (IL-8) were detected in cancer and TB effusions, but not in CHF. Surprisingly, the concentration of IL-8 correlated best with lymphocyte recruitment and not with neutrophil recruitment. Pleural fluid from cancer and TB patients was chemotactic for lymphocytes, and this activity was partly blocked by an anti-IL-8 antibody in cancer and completely blocked in TB. To determine whether there was the potential for a chemotactic gradient into the pleural space, pleural effusion cells were analyzed for the expression of IL-8. Cells in the effusions of cancer patients expressed IL-8, whereas IL-8 could not be detected from the cells of TB and CHF effusions. To explore the possible role of pleural macrophages in the regulation of IL-8, pleural effusion cells were treated with culture supernatants from stimulated pleural macrophages. Stimulated pleural macrophages were able to induce expression of messenger RNA (mRNA) for IL-8 and IL-8 protein production, and this activity was abrogated by blocking tumor necrosis factor- α . These findings suggest that soluble IL-8 is an important factor for the recruitment of lymphocytes into the pleural space, and that this cytokine is produced by both pleural structural and cancer cells after their activation by macrophage-derived, cytokine-mediated signals.

http://ajrccm.atsjournals.org/content/159/5/1592.long

Posted on

Cross reactivity of three T cell attracting murine chemokines stimulating the CXC chemokine receptor CXCR3 and their induction in cultured cells and during allograft rejection

Recent work identified the murine gene homologous to the human T cell attracting chemokine CXC receptor ligand 11 (CXCL11, also termed I-TAC, SCYB11, ss-R1, H174, IP-9). Here, the biological activity and expression patterns of murine CXCL11 relative to CXCL9 (MIG) and CXCL10 (IP-10/crg-2), the other two CXCR3 ligands, were assessed. Calcium mobilization and chemotaxis experiments demonstrated that murine CXCL11 stimulated murine CXCR3 at much lower doses than murine CXCL9 or murine CXCL10. Murine CXCL11 also evoked calcium mobilization in CHO cells transfected with human CXCR3 and was chemotactic for CXCR3-expressing human T lymphocytes as well as for 300–19 pre-B cells transfected with human or murine CXCR3. Moreover, murine CXCL11 blocked the chemotactic effect of human CXCL11 on human CXCR3 transfectants. Depending on cell type (macrophage-like cells RAW264.7, J774A.1, fetal F20 and adult dermal fibroblasts, immature and mature bone marrow-derived dendritic cells) and stimulus (interferons, LPS, IL-1 beta and TNF-alpha), an up to 10,000-fold increase of CXCL9, CXCL10 and CXCL11 mRNA levels, quantified by real-time PCR, was observed. In vivo, the three chemokines are constitutively expressed in various tissues from healthy BALB/c mice and were strongly up-regulated during rejection of allogeneic heart transplants. Chemokine mRNA levels exceeded those of CXCR3 and IFN-gamma which were induced with similar kinetics by several orders of magnitude.

full text available by subscription at: http://onlinelibrary.wiley.com/doi/10.1002/1521-4141%28200108%2931:8%3C2521::AID-IMMU2521%3E3.0.CO;2-Q/abstract;jsessionid=7CC3E7F4171070E371E5507EFC332EE3.d03t02

Posted on

Thioredoxin, a Redox Enzyme Released in Infection and Inflammation, Is a Unique Chemoattractant for Neutrophils, Monocytes, and T Cells

Thioredoxin (Trx) is a ubiquitous intracellular protein disulfide oxidoreductase with a CXXC active site that can be released by various cell types upon activation. We show here that Trx is chemotactic for monocytes, polymorphonuclear leukocytes, and T lymphocytes, both in vitro in the standard micro Boyden chamber migration assay and in vivo in the mouse air pouch model. The potency of the chemotactic action of Trx for all leukocyte populations is in the nanomolar range, comparable with that of known chemokines. However, Trx does not increase intracellular Ca2+ and its activity is not inhibited by pertussis toxin. Thus, the chemotactic action of Trx differs from that of known chemokines in that it is G protein independent. Mutation of the active site cysteines resulted in loss of chemotactic activity, suggesting that the latter is mediated by the enzyme activity of Trx. Trx also accounted for part of the chemotactic activity released by human T lymphotropic virus (HTLV)-1–infected cells, which was inhibited by incubation with anti-Trx antibody. Since Trx production is induced by oxidants, it represents a link between oxidative stress and inflammation that is of particular interest because circulating Trx levels are elevated in inflammatory diseases and HIV infection.

http://jem.rupress.org/content/189/11/1783.long

Posted on

CXC Chemokine Receptor 5 Expression Defines Follicular Homing T Cells with B Cell Helper Function

Leukocyte traffic through secondary lymphoid tissues is finely tuned by chemokines. We have studied the functional properties of a human T cell subset marked by the expression of CXC chemokine receptor 5 (CXCR5). Memory but not naive T cells from tonsils are CXCR5+ and migrate in response to the B cell–attracting chemokine 1 (BCA-1), which is selectively expressed by reticular cells and blood vessels within B cell follicles. Tonsillar CXCR5+ T cells do not respond to other chemokines present in secondary lymphoid tissues, including secondary lymphoid tissue chemokine (SLC), EBV-induced molecule 1 ligand chemokine (ELC), and stromal cell–derived factor 1 (SDF-1). The involvement of tonsillar CXCR5+ T cells in humoral immune responses is suggested by their localization in the mantle and light zone germinal centers of B cell follicles and by the concomitant expression of activation and costimulatory markers, including CD69, HLA-DR, and inducible costimulator (ICOS). Peripheral blood CXCR5+ T cells also belong to the CD4+ memory T cell subset but, in contrast to tonsillar cells, are in a resting state and migrate weakly to chemokines. CXCR5+ T cells are very inefficient in the production of cytokines but potently induce antibody production during coculture with B cells. These properties portray CXCR5+ T cells as a distinct memory T cell subset with B cell helper function, designated here as follicular B helper T cells (TFH).

http://jem.rupress.org/content/192/11/1553.long

Posted on

Activation of CD8 T cells induces expression of CD4, which functions as a chemotactic receptor

It was previously shown that costimulation of CD8+ lymphocytes results in de novo expression of CD4. This study expanded on this observation to investigate the function of CD4 on CD8 cells. The ability of costimulated CD8 cells to respond to interleukin 16 (IL-16), a ligand that binds CD4 and induces cellular chemotaxis, was examined. IL-16–mediated ligation of CD4 expressed on CD8 T cells was found to induce an intracellular signal that directs migration of these cells in vitro. Thus, expression of CD4 on a CD8 lymphocyte has functional importance and may serve to control distribution of newly activated CD8 T cells in vivo.

http://bloodjournal.hematologylibrary.org/content/99/1/207.long

Posted on

CD28 Signaling in Neutrophil Induces T-Cell Chemotactic Factor(s) Modulating T-Cell Response

ABSTRACT: We previously reported that human peripheral
blood neutrophils express CD28 and interact
with macrophage B7 to generate CD28 signaling through
PI-3 kinase. Here, we demonstrate that crosslinking of
CD28 on neutrophils results in the release of IFN-,
which restricts amastigote growth and modulates CD4
T cells cytokine secretion. CD28 crosslinking also induces
a T-cell chemotactic factor (TCF) that induces chemotactic
migration of CD4 T cells. Based on our previous and
the current set of data, we propose an operational model
explaining how neutrophils are involved in Leishmania
infection and how the reported effect of neutrophils on the
control of infection is mediated by alteration of T-cell
function. Human Immunology 64, 38–43 (2003). ©
American Society for Histocompatibility and Immunogenetics,
2003. Published by Elsevier Science Inc.

www.chemotaxis.sote.hu/…/Venuprasad-K-HumImmunol-2003.pdf