Posted on

Statins suppress THP-1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation

Macrophages secrete matrix metalloproteinase 9 (MMP-9), an enzyme that weakens the fibrous cap of atherosclerotic plaques, predisposing them to plaque rupture and subsequent ischemic events. Recent work indicates that statins strongly reduce the possibility of heart attack. Furthermore, these compounds appear to exert beneficial effects not only by lowering plasma low-density-lipoprotein cholesterol but also by directly affecting the artery wall. To evaluate whether statins influence the proinflammatory responses of monocytic cells, we studied their effects on the chemotactic migration and MMP-9 secretion of human monocytic cell line THP-1. Simvastatin dose dependently inhibited THP-1 cell migration mediated by monocyte chemoattractant protein 1, with a 50% inhibitory concentration of about 50 nM. It also inhibited bacterial lipopolysaccharide-stimulated secretion of MMP-9. The effects of simvastatin were completely reversed by mevalonate and its derivatives, farnesylpyrophosphate and geranylgeranyl pyrophosphate, but not by ubiquinone. Additional studies revealed similar but more profound inhibitory effects with L-839,867, a specific inhibitor of geranylgeranyl transferase. However, α-hydroxyfarnesyl phosphonic acid, an inhibitor of farnesyl transferase, had no effect. C3 exoenzyme, a specific inhibitor of the prenylated small signaling Rho proteins, mimicked the inhibitory effects of simvastatin and L-839,867. These data supported the role of geranylgeranylation in the migration and MMP-9 secretion of monocytes.

http://www.jleukbio.org/content/69/6/959.long

Posted on

Differential Leukocyte and Endothelial Responses through VEGFR1 and VEGFR2

Purpose: Vascular endothelial growth factor (VEGF) induces angiogenesis and vascular permeability and is thought to be operative in several ocular vascular diseases. The VEGF isoforms are highly conserved among species; however, little is known about their differential biological functions in adult tissue. In the current study, the inflammatory potential of two prevalent VEGF isoform splice variants, VEGF120(121) and VEGF164(165), was studied in the transparent and avascular adult mouse cornea.

Methods: Controlled-release pellets containing equimolar amounts of VEGF120 and VEGF164 were implanted in corneas. The mechanisms underlying this differential response of VEGF isoforms were explored. The response of VEGF in cultured endothelial cells was determined by Western blot analysis. The response of VEGF isoforms in leukocytes was also investigated.

Results: VEGF164 was found to be significantly more potent at inducing inflammation. In vivo blockade of VEGF receptor (VEGFR)-1 significantly suppressed VEGF164-induced corneal inflammation. In vitro, VEGF165 more potently stimulated intracellular adhesion molecule (ICAM)-1 expression on endothelial cells, an effect that was mediated by VEGFR2. VEGF164 was also more potent at inducing the chemotaxis of monocytes, an effect that was mediated by VEGFR1. In an immortalized human leukocyte cell line, VEGF165 was found to induce tyrosine phosphorylation of VEGFR1 more efficiently.

conclusions. Taken together, these data identify VEGF164(165) as a proinflammatory isoform and identify multiple mechanisms underlying its proinflammatory biology.

http://www.iovs.org/content/45/2/368.long

Posted on

Galectin-3 Is an Amplifier of Inflammation in Atherosclerotic Plaque Progression through Macrophage Activation and Monocyte Chemoattraction

Objective— Galectin-3 (Gal-3) is a 26-kDa lectin known to regulate many aspects of inflammatory cell behavior. We assessed the hypothesis that increased levels of Gal-3 contribute to atherosclerotic plaque progression by enhancing monocyte chemoattraction through macrophage activation.

Methods and Results— Gal-3 was found to be upregulated in unstable plaque regions of carotid endarterectomy (CEA) specimens compared with stable regions from the same patient (3.2-fold, P<0.05) at the mRNA (n=12) and (2.3-fold, P<0.01) at the protein level (n=9). Analysis of aortic tissue from ApoE−/− mice on a high fat diet (n=14) and wild-type controls (n=9) showed that Gal-3 mRNA and protein levels are elevated by 16.3-fold (P<0.001) and 12.2-fold (P<0.01) and that Gal-3 staining colocalizes with macrophages. In vitro, conditioned media from Gal-3–treated human macrophages induced an up to 6-fold increase in human monocyte chemotaxis (P<0.01, ANOVA), an effect that was reduced by 66 and 60% by Pertussis Toxin (PTX) and the Vaccinia virus protein 35K, respectively. Microarray analysis of human macrophages and subsequent qPCR validation confirmed the upregulation of CC chemokines in response to Gal-3 treatment.

Conclusions— Our data suggest that Gal-3 is both a marker of atherosclerotic plaque progression and a central contributor to the pathology by amplification of key proinflammatory molecules.

http://atvb.ahajournals.org/content/28/3/433.long

Posted on

Endothelial Responses to Oxidized Lipoproteins Determine Genetic Susceptibility to Atherosclerosis in Mice

Background—Oxidized LDL has been found within the subendothelial space, and it exhibits numerous atherogenic properties, including induction of inflammatory genes. We examined the possibility that variations in endothelial response to minimally modified LDL (MM-LDL) constitute one of the genetic components in atherosclerosis.

Methods and Results—By a novel explant technique, endothelial cells (ECs) were isolated from the aorta of inbred mouse strains with different susceptibilities to diet-induced atherosclerosis. Responses to MM-LDL were evaluated by examining the expression of inflammatory genes involved in atherosclerosis, including monocyte chemotactic protein-1 (MCP-1) and macrophage-colony–stimulating factor (M-CSF), an oxidative stress gene, heme oxygenase-1 (HO-1), and other, noninflammatory, genes. ECs from the susceptible mouse strain C57BL/6J exhibited dramatic induction of MCP-1, M-CSF, and HO-1, whereas ECs from the resistant strain C3H/HeJ showed little or no induction. In contrast, ECs from the 2 strains responded similarly to lipopolysaccharide.

Conclusions—These data provide strong evidence that genetic factors in atherosclerosis act at the level of the vessel wall.

http://circ.ahajournals.org/content/102/1/75.long

Posted on

Homocysteine induces monocyte chemoattractant protein-1 expression by activating NF-B in THP-1 macrophages

Homocysteinemia is an independent risk factor for cardiovascular disorders. The recruitment of monocytes is an important event in atherogenesis. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine that stimulates monocyte migration into the intima of arterial walls. The objective of the present study was to investigate the effect of homocysteine on MCP-1 expression in macrophages and the underlying mechanism of such effect. Human monocytic cell (THP-1)-derived macrophages were incubated with homocysteine. By nuclease protection assay and ELISA, homocysteine (0.05–0.2 mM) was shown to significantly enhance the expression of MCP-1 mRNA (up to 2.6-fold) and protein (up to 4.8-fold) in these cells. Homocysteine-induced MCP-1 expression resulted in increased monocyte chemotaxis. The increase in MCP-1 expression was associated with activation of nuclear factor (NF)-κB due to increased phosphorylation of the inhibitory protein (IκB-α) as well as reduced expression of IκB-α mRNA in homocysteine-treated cells. In conclusion, our results demonstrate that homocysteine, at pathological concentration, stimulates MCP-1 expression in THP-1 macrophages via NF-κB activation.

http://ajpheart.physiology.org/content/280/6/H2840.long

Posted on

Thioredoxin, a Redox Enzyme Released in Infection and Inflammation, Is a Unique Chemoattractant for Neutrophils, Monocytes, and T Cells

Thioredoxin (Trx) is a ubiquitous intracellular protein disulfide oxidoreductase with a CXXC active site that can be released by various cell types upon activation. We show here that Trx is chemotactic for monocytes, polymorphonuclear leukocytes, and T lymphocytes, both in vitro in the standard micro Boyden chamber migration assay and in vivo in the mouse air pouch model. The potency of the chemotactic action of Trx for all leukocyte populations is in the nanomolar range, comparable with that of known chemokines. However, Trx does not increase intracellular Ca2+ and its activity is not inhibited by pertussis toxin. Thus, the chemotactic action of Trx differs from that of known chemokines in that it is G protein independent. Mutation of the active site cysteines resulted in loss of chemotactic activity, suggesting that the latter is mediated by the enzyme activity of Trx. Trx also accounted for part of the chemotactic activity released by human T lymphotropic virus (HTLV)-1–infected cells, which was inhibited by incubation with anti-Trx antibody. Since Trx production is induced by oxidants, it represents a link between oxidative stress and inflammation that is of particular interest because circulating Trx levels are elevated in inflammatory diseases and HIV infection.

http://jem.rupress.org/content/189/11/1783.long

Posted on

Homocysteine induces monocyte chemoattractant protein-1 expression by activating NF-kappaB in THP-1 macrophages.

Homocysteinemia is an independent risk factor for cardiovascular disorders. The recruitment of monocytes is an important event in atherogenesis. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine that stimulates monocyte migration into the intima of arterial walls. The objective of the present study was to investigate the effect of homocysteine on MCP-1 expression in macrophages and the underlying mechanism of such effect. Human monocytic cell (THP-1)-derived macrophages were incubated with homocysteine. By nuclease protection assay and ELISA, homocysteine (0.05-0.2 mM) was shown to significantly enhance the expression of MCP-1 mRNA (up to 2.6-fold) and protein (up to 4.8-fold) in these cells. Homocysteine-induced MCP-1 expression resulted in increased monocyte chemotaxis. The increase in MCP-1 expression was associated with activation of nuclear factor (NF)-kappaB due to increased phosphorylation of the inhibitory protein (IkappaB-alpha) as well as reduced expression of IkappaB-alpha mRNA in homocysteine-treated cells. In conclusion, our results demonstrate that homocysteine, at pathological concentration, stimulates MCP-1 expression in THP-1 macrophages via NF-kappaB activation.

http://ajpheart.physiology.org/content/280/6/H2840.long

Posted on

Elevated bronchoalveolar concentrations of MCP-1 in patients with pulmonary alveolar proteinosis

ABSTRACT: Pulmonary alveolar proteinosis (PAP) is a rare disease of unknown
aetiology characterized by accumulations of lipoproteinaceous material within the
alveoli. The alveolar macrophages become increasingly foamy, and are thought to
have a role in the pathogenesis of PAP. However, the mechanisms of macrophage
recruitment are unclear.
In the bronchoalveolar lavage fluid (BALF) of four patients with PAP and 20
normal control subjects, the following were examined: the monocyte chemotactic
activity due to the chemokine monocyte chemoattractant protein (MCP)-1 with the
use of a chemotactic chamber assay, the levels of MCP-1 by enzyme-linked immunosorbent
assay, and the MCP-1 expression on lavage cells by immunocytochemistry
and in situ hybridization.
The monocyte chemotactic activity in the BALF of the PAP patients was markedly
elevated, and the activity was completely absorbed by treatment with anti-MCP-1.
The MCP-1 levels in the BALF were surprisingly high in the PAP group (25,100‹472
pg.mL-1), whereas low levels of MCP-1 were detected in the normal control subjects
(mean: never smokers 4.8; smokers 10.4 pg.mL-1). MCP-1 protein and messenger
ribonucleic acid were expressed by macrophages from the PAP patients, and the
expression was reduced according to foaming of the cells; there were monocyte-like
macrophages with strong expression, small foamy cells with moderate expression,
large foamy cells with a faint expression of MCP-1, and ghost cells with no expression.
However, the increase of macrophage number in the PAP BALF was relatively small.
These data suggest that monocyte chemoattractant protein-1 expression by alveolar
macrophages represents an amplification mechanism for the recruitment of additional
macrophages to the alveoli in pulmonary alveolar proteinosis. It is possible that an
ingestion of an excess of alveolar materials in pulmonary alveolar proteinosis may
impair the macrophage function and the survival, resulting in the lack of a prominent
increase in the macrophage number in bronchoalveolar lavage fluid.

www.ersj.org.uk/content/14/2/383.full.pdf