Posted on

Retinoblastoma Protein Expression Leads to Reduced Oct-1 DNA Binding Activity and Enhances Interleukin-8 Expression

Tumor cell lines with a defective retinoblastoma gene are unableto transcribe the HLA class II genes in response to IFN-{gamma} treatment,and reconstitution of functional Rb rescues IFN-{gamma}-induced classII gene expression. However, the molecular mechanism of Rb rescueof the class II genes is unknown. We have examined the effectof Rb expression on the activation of the promoter for HLA-DRA,the prototype class II gene. Oct-1, a POU domain transcriptionfactor, was identified as a repressor of HLA-DRA promoter activityin the Rb-defective cells. Rb expression led to phosphorylationof Oct-1, thus relieving its repressive effect. Oct-1 has alsobeen shown to repress interleukin 8 promoter activity. Consistentwith reduced levels of Oct-1 DNA binding activity in the Rb-transformedcell lines, interleukin 8 expression is higher in these celllines.

http://cgd.aacrjournals.org/cgi/content/full/10/7/457

Posted on

Exploitation of Interleukin-8-Induced Neutrophil Chemotaxis by the Agent of Human Granulocytic Ehrlichiosis

The agent of human granulocytic ehrlichiosis (HGE) is an obligate intracellular bacterium with a tropism for neutrophils; however, the mechanisms of bacterial dissemination are not yet understood. Interleukin-8 (IL-8) is a chemokine that induces neutrophil migration to sites of infection for host defense against pathogens. We now show that HGE bacteria, and the HGE-44 protein, induce IL-8 secretion in a promyelocytic (HL-60) cell line that has been differentiated along the neutrophil lineage with retinoic acid and in neutrophils. Infected HL-60 cells also demonstrate upregulation of CXCR2, an IL-8 receptor, but not CXCR1. Human neutrophils migrate towardsEhrlichia sp.-infected cells in a chemotaxis chamber assay, and this movement can be blocked with antibodies to IL-8. Finally, immunocompetent and severe combined immunodeficient mice administered CXCR2 antisera, and CXCR2−/− mice that lack the human IL-8 receptor homologue, are much less susceptible to granulocytic ehrlichiosis than are control animals. These results demonstrate that HGE bacteria induce IL-8 production by host cells and, paradoxically, appear to exploit this chemokine to enhance infection.

http://iai.asm.org/content/69/9/5577.long

Posted on

Nitrite Reductase from Pseudomonas aeruginosa Released by Antimicrobial Agents and Complement Induces Interleukin-8 Production in Bronchial Epithelial Cells

We have recently reported that nitrite reductase, a bifunctional enzyme located in the periplasmic space of Pseudomonas aeruginosa, could induce interleukin-8 (IL-8) generation in a variety of respiratory cells, including bronchial epithelial cells (K. Oishi et al. Infect. Immun. 65:2648–2655, 1997). In this report, we examined the mode of nitrite reductase (PNR) release from a serum-sensitive strain of live P. aeruginosa cells during in vitro treatment with four different antimicrobial agents or human complement. Bacterial killing of P. aeruginosa by antimicrobial agents induced PNR release and mediated IL-8 production in human bronchial epithelial (BET-1A) cells. Among these agents, imipenem demonstrated rapid killing of P. aeruginosa as well as rapid release of PNR and resulted in the highest IL-8 production. Complement-mediated killing of P. aeruginosa was also associated with PNR release and enhanced IL-8 production. The immunoprecipitates of the aliquots of bacterial culture containing imipenem or complement with anti-PNR immunoglobulin G (IgG) induced a twofold-higher IL-8 production than did the immunoprecipitates of the aliquots of bacterial culture with a control IgG. These pieces of evidence confirmed that PNR released in the aliquots of bacterial culture was responsible for IL-8 production in the BET-1A cells. Furthermore, the culture supernatants of the BET-1A cells stimulated with aliquots of bacterial culture containing antimicrobial agents or complement similarly mediated neutrophil migration in vitro. These data support the possibility that a potent inducer of IL-8, PNR, could be released from P. aeruginosa after exposure to antimicrobial agents or complement and contributes to neutrophil migration in the airways during bronchopulmonary infections with P. aeruginosa.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC89209/

Posted on

Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis

Leukocyte recruitment in inflammation is critical for host defense, but excessive accumulation of inflammatory cells can lead to tissue damage. Neutrophil-derived serine proteases (cathepsin G [CG], neutrophil elastase [NE], and proteinase 3 [PR3]) are expressed specifically in mature neutrophils and are thought to play an important role in inflammation. To investigate the role of these proteases in inflammation, we generated a mouse deficient in dipeptidyl peptidase I (DPPI) and established that DPPI is required for the full activation of CG, NE, and PR3. Although DPPI–/– mice have normal in vitro neutrophil chemotaxis and in vivo neutrophil accumulation during sterile peritonitis, they are protected against acute arthritis induced by passive transfer of monoclonal antibodies against type II collagen. Specifically, there is no accumulation of neutrophils in the joints of DPPI–/– mice. This protective effect correlates with the inactivation of neutrophil-derived serine proteases, since NE–/– × CG–/– mice are equally resistant to arthritis induction by anti-collagen antibodies. In addition, protease-deficient mice have decreased response to zymosan- and immune complex–mediated inflammation in the subcutaneous air pouch. This defect is accompanied by a decrease in local production of TNF-α and IL-1β. These results implicate DPPI and polymorphonuclear neutrophil–derived serine proteases in the regulation of cytokine production at sites of inflammation.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC150852/

Posted on

Effect of Theophylline on Induced Sputum Inflammatory Indices and Neutrophil Chemotaxis in Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is characterized by a neutrophilic airway inflammation that can be demonstrated by examination of induced sputum. Theophylline has antiinflammatory effects in asthma, and in the present study we investigated whether a similar effect occurs in COPD patients treated with low doses of theophylline. Twenty-five patients with COPD were treated with theophylline (plasma level of 9–11 mg/L) for 4 weeks in a placebo-controlled, randomized, double-blind crossover study. Theophylline was well tolerated. Induced sputum inflammatory cells, neutrophils, interleukin-8, myeloperoxidase, and lactoferrin were all significantly reduced by about 22% by theophylline. Neutrophils from subjects treated with theophylline showed reduced chemotaxis to N-formyl-met-leu-phe (∼ 28%) and interleukin-8 (∼ 60%). Neutrophils from a healthy donor showed reduced chemotaxis (∼ 30%) to induced sputum samples obtained during theophylline treatment. These results suggest that theophylline has antiinflammatory properties that may be useful in the long-term treatment of COPD.

http://ajrccm.atsjournals.org/content/165/10/1371.long

Posted on

Modulating phosphatidic acid metabolism decreases oxidative injury in rat lungs

We determined that lisofylline, a potent inhibitor of oleate- and linoleate-containing phosphatidic acid formation (half-maximal inhibitory concentration = 40 nM), prevented oxidant-mediated capillary leak in isolated rat lungs given interleukin-8 (IL-8) intratracheally and perfused with human neutrophils. Lung leak was prevented by lung, but not neutrophil, lisofylline pretreatment. Furthermore, although lisofylline inhibited IL-8-stimulated neutrophil production of phosphatidic acid in vitro, it did not prevent IL-8-stimulated neutrophil adherence, chemotaxis, or intracellular calcium mobilization or N-formyl-Met-Leu-Phe (fMLP)-stimulated oxidant production in vitro. Lisofylline also prevented acute capillary leak in isolated rat lungs perfused only with the oxidant generator purine-xanthine oxidase but did not scavenge Formula or H2O2 in vitro. Finally, lisofylline-mediated protection against lung leak in both models was associated with alterations in lung membrane free fatty acid acyl composition (as reflected by the decreased ratio [linoleate + oleate]/ [palmitate]). We conclude that lisofylline prevented both neutrophil-dependent and neutrophil-independent oxidant-induced capillary leak in isolated rat lungs and that protection appears to be mediated by blocking intrinsic lung linoleoyl phosphatidic acid metabolism. We speculate that lisofylline, in addition to our previously reported effects on cytokine signaling by intrapulmonary mononuclear cells, alters intrinsic pulmonary capillary membrane composition and renders this barrier less vulnerable to oxidative damage.

http://ajplung.physiology.org/content/273/5/L957.long

Posted on

IL-8 release and neutrophil activation by Clostridium difficile toxin-exposed human monocytes

Neutrophil infiltration is central to the pathogenesis of Clostridium difficile toxin A-induced enterocolitis. This study examines whether monocyte activation by C. difficile toxins is instrumental in initiating neutrophil activation and recruitment. Human monocytes were exposed to low concentrations of highly purified C. difficile toxins, and the conditioned media were harvested for cytokine and functional assays. Monocytes exposed to C. difficile toxin A (10−10 M) or toxin B (10−12 M) released 100 and 20 times basal levels, respectively, of the neutrophil chemoattractant interleukin-8 (IL-8). Reverse transcriptase-polymerase chain reaction demonstrated a marked increase in IL-8 mRNA expression by monocytes 3 h after toxin exposure. Conditioned media from toxin A- and toxin B-treated monocytes stimulated neutrophil migration (324 and 245% of control, respectively). This effect was completely blocked by IL-8 antiserum. These media also upregulated neutrophil CD11b/CD18 and endothelial cell intercellular adhesion molecule-1 expression. C. difficile toxins, at low concentrations, potently activate monocytes to release factors, including IL-8, that facilitate neutrophil extravasation and tissue infiltration. Our findings indicate a major role for toxin-mediated monocyte and macrophage activation in C. difficile colitis.

http://ajpgi.physiology.org/content/273/6/G1333.full?sid=1956e877-f6e9-4240-9ef5-8be744ec4a2c

Posted on

Toll-like receptors stimulate human neutrophil function

The first immune cell to arrive at the site of infection is the neutrophil. Upon arrival, neutrophils quickly initiate microbicidal functions, including the production of antimicrobial products and proinflammatory cytokines that serve to contain infection. This allows the acquired immune system enough time to generate sterilizing immunity and memory. Neutrophils detect the presence of a pathogen through germ line-encoded receptors that recognize microbe-associated molecular patterns. In vertebrates, the best characterized of these receptors are Toll-like receptors (TLRs). We have determined the expression and function of TLRs in freshly isolated human neutrophils. Neutrophils expressed TLR1, 2, 4, 5, 6, 7, 8, 9, and 10—all the TLRs except TLR3. Granulocyte-macrophage colony-stimulating factor (GM-CSF) treatment increased TLR2 and TLR9 expression levels. The agonists of all TLRs expressed in neutrophils triggered or primed cytokine release, superoxide generation, and L-selectin shedding, while inhibiting chemotaxis to interleukin-8 (IL-8) and increasing phagocytosis of opsonized latex beads. The response to the TLR9 agonist nonmethylated CpG-motif-containing DNA (CpG DNA) required GM-CSF pretreatment, which also enhanced the response to the other TLR agonists. Finally, using quantitative polymerase chain reaction (QPCR), we demonstrate a chemokine expression profile that suggests that TLR-stimulated neutrophils recruit innate, but not acquired, immune cells to sites of infection.

http://bloodjournal.hematologylibrary.org/content/102/7/2660.full.html

Posted on

Neutrophil Chemotactic Activity of Sputum From Patients With COPD

Neutrophilic inflammation is a major feature of COPD.  Several factors in bronchial secretions have been identified as chemoattractants for neutrophils. The present study was designed to assess the contribution of interleukin (IL)-8 and leukotriene B4 (LTB4) to neutrophil chemotaxis evoked by sputum obtained from patients with established COPD.
Design: Sputum supernatant of 20 patients with COPD was used as chemoattractant in a 96-well
chemotaxis chamber, with subsequent quantification of migrated cells by a luminescence assay.
The contribution of IL-8 and LTB4 to chemotaxis was determined by addition of a neutralizing
antibody and a selective receptor antagonist, respectively.
Measurements and results: COPD sputum caused neutrophil chemotaxis in a concentration dependent manner, with a maximum response evoked with a 10-fold dilution of the original
sample. Pretreatment of sputum or neutrophils with either an anti–IL-8 antibody or the LTB4
antagonist, SB 201146, led to a concentration-dependent inhibition of sputum-induced neutrophil chemotaxis, with a maximum suppression (mean  SEM) of 29.2  4.9% (p < 0.001) from baseline by 100 ng/mL of anti–IL-8 antibody, and 45.6  7% (p < 0.02) by 10 mol/L of SB
201146. The combination of the anti–IL-8 antibody and SB 201146 inhibited neutrophil
chemotaxis, but this was not significantly greater than the effect of SB 201146 or anti–IL-8 alone.
Conclusions: These data confirm the importance of IL-8 and LTB4 as chemoattractants for
neutrophils in bronchial secretions from patients with COPD, and suggest that specific inhibitors
may have therapeutic potential in COPD.

http://journal.publications.chestnet.org/article.aspx?articleid=1081469