Posted on

Rapid densitometric determination of cell migration and cell adhesion in a microchemotaxis chamber

A new rapid staining and measuring method has been developed for the quantification of migrated cells in a microchemotaxis chamber. The migrated cells were, after staining, evaluated by a transmission densitometer. The method introduced here is more accurate and faster than those described previously. In addition the technique can be used to determine the adherent capacity of cells.

full text by subscription at:

http://www.sciencedirect.com/science/article/pii/0022175989900513

Posted on

Exploitation of Interleukin-8-Induced Neutrophil Chemotaxis by the Agent of Human Granulocytic Ehrlichiosis

The agent of human granulocytic ehrlichiosis (HGE) is an obligate intracellular bacterium with a tropism for neutrophils; however, the mechanisms of bacterial dissemination are not yet understood. Interleukin-8 (IL-8) is a chemokine that induces neutrophil migration to sites of infection for host defense against pathogens. We now show that HGE bacteria, and the HGE-44 protein, induce IL-8 secretion in a promyelocytic (HL-60) cell line that has been differentiated along the neutrophil lineage with retinoic acid and in neutrophils. Infected HL-60 cells also demonstrate upregulation of CXCR2, an IL-8 receptor, but not CXCR1. Human neutrophils migrate towardsEhrlichia sp.-infected cells in a chemotaxis chamber assay, and this movement can be blocked with antibodies to IL-8. Finally, immunocompetent and severe combined immunodeficient mice administered CXCR2 antisera, and CXCR2−/− mice that lack the human IL-8 receptor homologue, are much less susceptible to granulocytic ehrlichiosis than are control animals. These results demonstrate that HGE bacteria induce IL-8 production by host cells and, paradoxically, appear to exploit this chemokine to enhance infection.

http://iai.asm.org/content/69/9/5577.long