Posted on

Fibroblast Chemotaxis Induction by Human Recombinant Interleukin-4

Interleukin-4 is a T lymphocyte- and mast cell-derived cytokine with pleiotropic properties with biological effects on a variety of target cells including B and T lymphocytes, macrophages, hematopoietic cells, mast cells, and fibroblasts. In addition to the proliferation effect of IL-4 on fibroblasts, which has been previously described, in this report the chemotactic properties of IL-4 for fibroblasts is described. Human recombinant IL-4 induced the chemotactic migration of dermal fibroblasts in vitro in modified Boyden-type chambers at concentrations between 10(-12) and 10(-11) M. The chemotactic activity of IL-4 was neutralized by anti-human recombinant IL-4 IgG antibodies. Oligopeptides representing the complete deduced amino acid sequence of human IL-4 were synthesized by the Merrifield technique and tested for their ability to induce fibroblast chemotaxis. Two peptides representing residues 70-88 and 89-122 induced fibroblast migration. Peptide 70-88 was the more potent of the two causing chemotaxis of fibroblasts at 10(-8)-10(-6) M while peptide 89-129 induced migration at 10(-7)-10(-5) M. Although the mechanism by which IL-4 and these two peptides induce fibroblast chemotaxis is unknown, each of these three compounds were able to chemotactically desensitize fibroblasts to the chemotactic effects of the other two but not to a structurally unrelated chemotactic cytokine, transforming growth factor beta-1. These studies suggest that IL-4 might function in vivo to induce the accumulation of fibroblasts at sites of tissue injury, inflammatory and immune reactions in which T lymphocytes and mast cells participate.

pdf available at: http://www.jci.org/articles/view/115247

Posted on

Direct Cell Adhesion to the Angiopoietins Mediated by Integrins

Genetic ablation of angiopoietin-1 (Ang-1) or of its cognate receptor, Tie2, disrupts angiogenesis in mouse embryos. The endothelial cells in growing blood vessels of Ang-1 knockout mice have a rounded appearance and are poorly associated with one another and their underlying basement membranes (Dumont, D. J., Gradwohl, G., Fong, G. H., Puri, M. C., Gertsenstein, M., Auerbach, A., and Breitman, M. L. (1994) Genes Dev. 8, 1897–1909; Sato, T. N., Tozawa, Y., Deutsch, U., Wolburg-Buchholz, K., Fujiwara, Y., Gendron-Maguire, M., Gridley, T., Wolburg, H., Risau, W., and Qin, Y. (1995) Nature 376, 70–74; Suri, C., Jones, P. F., Patan, S., Bartunkova, S., Maisonpierre, P. C., Davis, S., Sato, T. N., and Yancopoulos, G. D. (1996) Cell 87, 1171–1180). It is therefore possible that Ang-1 regulates endothelial cell adhesion. In this study we asked whether Ang-1 might act as a direct substrate for cell adhesion. Human umbilical vein endothelial cells (HUVECs) plated for a brief period on different substrates were found to adhere and spread well on Ang-1. Similar results were seen on angiopoietin-2 (Ang-2)-coated surfaces, although cells did not spread well on Ang-2. Ang-1, but not Ang-2, supported HUVEC migration, and this was independent of growth factor activity. When the same experiments were done with fibroblasts that either lacked, or stably expressed, Tie2, results similar to those with HUVECs were seen, suggesting that adhesion to the angiopoietins was independent of Tie2 and not limited to endothelial cells. Interestingly, when integrin-blocking agents were included in these assays, adhesion to either angiopoietin was significantly reduced. Moreover, Chinese hamster ovary-B2 cells lacking the α5 integrin subunit did not adhere to Ang-1, but they did adhere to Ang-2. Stable expression of the human α5 integrin subunit in these cells rescued adhesion to Ang-1 and promoted an increase in adhesion to Ang-2. We also found that Ang-1 and Ang-2 bind rather selectively to vitronectin. These results suggest that, beyond their role in modulating Tie2 signaling, Ang-1 and Ang-2 can directly support cell adhesion mediated by integrins.

http://www.jbc.org/content/276/28/26516.long

Posted on

Effect of PDGF, IL-la, and BMP2/4 on Corneal Fibroblast Chemotaxis: Expression of the Platelet- Derived Growth Factor System in the Cornea

PURPOSE. The purpose of this study was to examine expression of platelet-derived growth factor (PDGF) and PDGF receptors in the human cornea and to study the effects of the PDGF isotypes on proliferation and chemotaxis of human corneal fibroblasts. The effects of interleukin (IL)-lai, bone morphogenic protein (BMP)2, and BMP4 on chemotaxis of human corneal fibroblasts were also studied.

www.iovs.org/content/40/7/1364.full.pdf

Posted on

Lysophosphatidic acid induces cell migration through the selective activation of Akt1

Akt plays pivotal roles in many physiological responses including growth, proliferation, survival, metabolism, and migration. In the current studies, we have evaluated the isoform-specific role of akt in lysophosphatidic acid (LPA)-induced cell migration. Ascites from ovarian cancer patients (AOCP) induced mouse embryo fibroblast (MEF) cell migration in a dose-dependent manner. On the other hand, ascites from liver cirrhosis patients (ALCP) did not induce MEF cell migration. AOCP-induced MEF cell migration was completely blocked by pre-treatment of cells with LPA receptor antagonist, Ki16425. Both LPA- and AOCP-induced MEF cell migration was completely attenuated by PI3K inhibitor, LY294002. Furthermore, cells lacking Akt1 displayed defect in LPA-induced cell migration. Re-expression of Akt1 in DKO (Akt1-/-Akt2-/-) cells restored LPA-induced cell migration, whereas re-expression of Akt2 in DKO cells could not restore the LPA-induced cell migration. Finally, Akt1 was selectively phosphorylated by LPA and AOCP stimulation. These results suggest that LPA is a major factor responsible for AOCP-induced cell migration and signaling specificity of Akt1 may dictate LPA-induced cell migration.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679274/

Posted on

Activation of Protein Kinase C α Is Necessary for Sorting the PDGF β-Receptor to Rab4a-dependent Recycling

Previous studies showed that loss of the T-cell protein tyrosine phosphatase (TC-PTP) induces Rab4a-dependent recycling of the platelet-derived growth factor (PDGF) β-receptor in mouse embryonic fibroblasts (MEFs). Here we identify protein kinase C (PKC) α as the critical signaling component that regulates the sorting of the PDGF β-receptor at the early endosomes. Down-regulation of PKC abrogated receptor recycling by preventing the sorting of the activated receptor into EGFP-Rab4a positive domains on the early endosomes. This effect was mimicked by inhibition of PKCα, using myristoylated inhibitory peptides or by knockdown of PKCα with shRNAi. In wt MEFs, short-term preactivation of PKC by PMA caused a ligand-induced PDGF β-receptor recycling that was dependent on Rab4a function. Together, these observations demonstrate that PKC activity is necessary for recycling of ligand-stimulated PDGF β-receptor to occur. The sorting also required Rab4a function as it was prevented by expression of EGFP-Rab4aS22N. Preventing receptor sorting into recycling endosomes increased the rate of receptor degradation, indicating that the sorting of activated receptors at early endosomes directly regulates the duration of receptor signaling. Activation of PKC through the LPA receptor also induced PDGF β-receptor recycling and potentiated the chemotactic response to PDGF-BB. Taken together, our present findings indicate that sorting of PDGF β-receptors on early endosomes is regulated by sequential activation of PKCα and Rab4a and that this sorting step could constitute a point of cross-talk with other receptors.

http://www.molbiolcell.org/content/20/12/2856.full