Posted on

Septic Shock and Acute Lung Injury in Rabbits with pertonitis

The major goal of this study was to investigate the mechanisms that link the host response to a local infection in the peritoneal cavity with the development of sepsis and lung injury. Rabbits were infected by intraperitoneal inoculation of fibrin clots containing Escherichia coli at 108, 109, or 1010 cfu/clot. Physiologic, bacteriologic, and inflammatory responses were monitored, and the lungs were examined postmortem. At a dose of 108 cfu/clot the animals had resolving infection, and a dose of 109 cfu/clot resulted in persistent infection at 24 h, with minimal systemic manifestations. In contrast, inoculation of 1010 cfu/clot resulted in rapidly lethal local infection, with septic shock and lung injury. The onset of septic shock was associated with a paradoxical lack of identifiable polymorphonuclear leukocytes (PMN; neutrophils) in the peritoneal cavity. The absence of PMN in the peritoneum was due in part to lysis of intraperitoneal PMN, because the peritoneal fluids contained free myeloperoxidase and induced rapid death of normal rabbit PMN in vitro. Although most animals became bacteremic, only those with a severe systemic inflammation response developed lung injury. These data show that control of an infection in the first compartment in which bacteria enter the host is a critical determinant of the systemic response. Above a threshold dose of bacteria, failure of the local neutrophil response is a key mechanism associated with deleterious systemic responses. Bacteremia alone is not sufficient to cause lung injury. Lung injury occurs only in the setting of a severe systemic inflammatory response and an inadequate leukocyte response at the primary site of infection.

http://ajrccm.atsjournals.org/content/163/1/234.long

Posted on

Interleukin-8 Induces Lymphocyte Chemotaxis into the Pleural Space

The pleural space is a potential compartment between the lung and chest wall that becomes filled with fluid and inflammatory cells in a number of respiratory diseases. In an attempt to understand one aspect of the inflammatory process in the pleural space, we compared the responses in three different diseases (congestive heart failure [CHF], tuberculosis [TB], and cancer). Large concentrations of interleukin-8 (IL-8) were detected in cancer and TB effusions, but not in CHF. Surprisingly, the concentration of IL-8 correlated best with lymphocyte recruitment and not with neutrophil recruitment. Pleural fluid from cancer and TB patients was chemotactic for lymphocytes, and this activity was partly blocked by an anti-IL-8 antibody in cancer and completely blocked in TB. To determine whether there was the potential for a chemotactic gradient into the pleural space, pleural effusion cells were analyzed for the expression of IL-8. Cells in the effusions of cancer patients expressed IL-8, whereas IL-8 could not be detected from the cells of TB and CHF effusions. To explore the possible role of pleural macrophages in the regulation of IL-8, pleural effusion cells were treated with culture supernatants from stimulated pleural macrophages. Stimulated pleural macrophages were able to induce expression of messenger RNA (mRNA) for IL-8 and IL-8 protein production, and this activity was abrogated by blocking tumor necrosis factor- α . These findings suggest that soluble IL-8 is an important factor for the recruitment of lymphocytes into the pleural space, and that this cytokine is produced by both pleural structural and cancer cells after their activation by macrophage-derived, cytokine-mediated signals.

http://ajrccm.atsjournals.org/content/159/5/1592.long

Posted on

Expression of c-ret promotes morphogenesis and cell survival in mIMCD-3 cells

c-Ret, a protein tyrosine kinase receptor, and its ligand glial-derived neurotropic factor (GDNF) are critical for early regulation of ureteric bud development and nephrogenesis. To address whether c-ret directly initiates epithelial cell morphogenesis, the c-ret receptor was expressed in murine inner medullary collecting duct cells (mIMCD-3, a cell line of ureteric bud origin, which has no detectable endogenous c-ret expression). Stable expression of wild-type c-ret was found to yield a constitutively tyrosine-phosphorylated receptor, with no change after the addition of GDNF. Examination of mRNA from these cells demonstrated the message for endogenous GDNF, suggesting that c-ret was potentially being constitutively activated by an autocrine mechanism. When mIMCD-3 cells stably expressing the phosphorylated c-ret receptor were cultured in a type I collagen matrix, they exhibited little GDNF-independent or -dependent branching process formation at early time points compared with the known morphogen hepatocyte growth factor (HGF) (48 h; control, 0.33 ± 0.33; GDNF, 1.0 ± 0.58,P = nonsignificant; and HGF, 6.33 ± 0.33 processes/20 cell clusters,P < 0.001), whereas extended culture (7 days) under serum-free conditions revealed a marked increase in cell survival and the spontaneous development of rudimentary branching process formation. Extended culture (7 days) of c-ret-expressing clones in type I collagen with the epithelial morphogens HGF and/or epidermal growth factor (EGF) resulted in the development of complex three-dimensional spiny cysts, whereas parental mIMCD-3 cells died under these conditions. We conclude that activated c-ret appears to mediate epithelial morphogenesis by prolonging cell survival and, in conjunction with activation of the morphogenic receptors c-met and the EGF receptor, initiates the events required for very early branching morphogenesis.

http://ajprenal.physiology.org/content/276/4/F581.long

Posted on

Roles for C-X-C chemokines and C5a in lung injury after hindlimb ischemia-reperfusion

We evaluated the roles of the C-X-C chemokines cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) as well as the complement activation product C5a in development of lung injury after hindlimb ischemia-reperfusion in rats. During reperfusion, CD11b and CD18, but not CD11a, were upregulated on neutrophils [bronchoalveolar lavage (BAL) and blood] and lung macrophages. BAL levels of CINC and MIP-2 were increased during the ischemic and reperfusion periods. Treatment with either anti-CINC or anti-MIP-2 IgG significantly reduced lung vascular permeability and decreased lung myeloperoxidase content by 93 and 68%, respectively (P < 0.05). During the same period, there were significant increases in serum C5a-related neutrophil chemotactic activity. Treatment with anti-C5a decreased lung vascular permeability, lung myeloperoxidase, and BAL CINC by 51, 58, and 23%, respectively (P < 0.05). The data suggest that the C-X-C chemokines CINC and MIP-2 as well as the complement activation product C5a are required for lung neutrophil recruitment and full induction of lung injury after hindlimb ischemia-reperfusion in rats.

http://ajplung.physiology.org/content/276/1/L57.long

Posted on

Neutrophil-mediated epithelial injury during transmigration: role of elastase

Neutrophil-mediated injury to gut epithelium may lead to disruption of the epithelial barrier function with consequent organ dysfunction, but the mechanisms of this are incompletely characterized. Because the epithelial apical junctional complex, comprised of tight and adherens junctions, is responsible in part for this barrier function, we investigated the effects of neutrophil transmigration on these structures. Using a colonic epithelial cell line, we observed that neutrophils migrating across cell monolayers formed clusters that were associated with focal epithelial cell loss and the creation of circular defects within the monolayer. The loss of epithelial cells was partly attributable to neutrophil-derived proteases, likely elastase, because it was prevented by elastase inhibitors. Spatially delimited disruption of epithelial junctional complexes with focal loss of E-cadherin, β-catenin, and zonula occludens 1 was observed adjacent to clusters of transmigrating neutrophils. During neutrophil transmigration, fragments of E-cadherin were released into the apical supernatant, and inhibitors of neutrophil elastase prevented this proteolytic degradation. Addition of purified leukocyte elastase also resulted in release of E-cadherin fragments, but only after opening of tight junctions. Taken together, these data demonstrate that neutrophil-derived proteases can mediate spatially delimited disruption of epithelial apical junctions during transmigration. These processes may contribute to epithelial loss and disruption of epithelial barrier function in inflammatory diseases.

http://ajpgi.physiology.org/content/281/3/G705.long

Posted on

15(S)-HETE modulates LTB4 production and neutrophil chemotaxis in chronic bronchitis

We evaluated the levels of 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE] and the expression of 15-lipoxygenase (15-LO) mRNA in induced sputum obtained from 10 control and 15 chronic bronchitis subjects. 15(S)-HETE was evaluated by reverse phase high-performance liquid chromatography separation followed by specific RIA. 15-LO mRNA expression was determined by primed in situ labeling. The levels of both soluble and cell-associated 15(S)-HETE resulted significantly higher in chronic bronchitis than in control subjects. The percentage of cells expressing 15-LO mRNA was significantly higher in chronic bronchitis than in control subjects (P < 0.01). Double staining for specific cell type markers and 15-LO mRNA showed macrophages and neutrophils positive for 15-LO, whereas similar staining of peripheral blood neutrophils did not show evidence for 15-LO expression, suggesting that expression of 15-LO in neutrophils takes place on migration into the airways. Because 15(S)-HETE inversely correlated with the percentage of neutrophils in sputum of chronic bronchitis subjects, we studied the effect of 15(S)-HETE on leukotriene B4 (LTB4) production in vitro and evaluated the concentration of LTB4 in induced sputum and the contribution of LTB4 to the chemotactic activity of induced sputum samples ex vivo. The results obtained indicate that macrophages and neutrophils present within the airways of chronic bronchitis subjects express 15-LO mRNA; increased basal levels of 15(S)-HETE may contribute to modulate, through the inhibition of 5-lipoxygenase metabolites production, neutrophil infiltration and airway inflammation associated with chronic bronchitis.

http://ajpcell.physiology.org/content/279/4/C1249.full

Posted on

Nitrite Reductase from Pseudomonas aeruginosa Released by Antimicrobial Agents and Complement Induces Interleukin-8 Production in Bronchial Epithelial Cells

We have recently reported that nitrite reductase, a bifunctional enzyme located in the periplasmic space of Pseudomonas aeruginosa, could induce interleukin-8 (IL-8) generation in a variety of respiratory cells, including bronchial epithelial cells (K. Oishi et al. Infect. Immun. 65:2648–2655, 1997). In this report, we examined the mode of nitrite reductase (PNR) release from a serum-sensitive strain of live P. aeruginosa cells during in vitro treatment with four different antimicrobial agents or human complement. Bacterial killing of P. aeruginosa by antimicrobial agents induced PNR release and mediated IL-8 production in human bronchial epithelial (BET-1A) cells. Among these agents, imipenem demonstrated rapid killing of P. aeruginosa as well as rapid release of PNR and resulted in the highest IL-8 production. Complement-mediated killing of P. aeruginosa was also associated with PNR release and enhanced IL-8 production. The immunoprecipitates of the aliquots of bacterial culture containing imipenem or complement with anti-PNR immunoglobulin G (IgG) induced a twofold-higher IL-8 production than did the immunoprecipitates of the aliquots of bacterial culture with a control IgG. These pieces of evidence confirmed that PNR released in the aliquots of bacterial culture was responsible for IL-8 production in the BET-1A cells. Furthermore, the culture supernatants of the BET-1A cells stimulated with aliquots of bacterial culture containing antimicrobial agents or complement similarly mediated neutrophil migration in vitro. These data support the possibility that a potent inducer of IL-8, PNR, could be released from P. aeruginosa after exposure to antimicrobial agents or complement and contributes to neutrophil migration in the airways during bronchopulmonary infections with P. aeruginosa.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC89209/

Posted on

Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis

Leukocyte recruitment in inflammation is critical for host defense, but excessive accumulation of inflammatory cells can lead to tissue damage. Neutrophil-derived serine proteases (cathepsin G [CG], neutrophil elastase [NE], and proteinase 3 [PR3]) are expressed specifically in mature neutrophils and are thought to play an important role in inflammation. To investigate the role of these proteases in inflammation, we generated a mouse deficient in dipeptidyl peptidase I (DPPI) and established that DPPI is required for the full activation of CG, NE, and PR3. Although DPPI–/– mice have normal in vitro neutrophil chemotaxis and in vivo neutrophil accumulation during sterile peritonitis, they are protected against acute arthritis induced by passive transfer of monoclonal antibodies against type II collagen. Specifically, there is no accumulation of neutrophils in the joints of DPPI–/– mice. This protective effect correlates with the inactivation of neutrophil-derived serine proteases, since NE–/– × CG–/– mice are equally resistant to arthritis induction by anti-collagen antibodies. In addition, protease-deficient mice have decreased response to zymosan- and immune complex–mediated inflammation in the subcutaneous air pouch. This defect is accompanied by a decrease in local production of TNF-α and IL-1β. These results implicate DPPI and polymorphonuclear neutrophil–derived serine proteases in the regulation of cytokine production at sites of inflammation.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC150852/

Posted on

Differential Caveolin-1 Polarization in Endothelial Cells during Migration in Two and Three Dimensions

Endothelial cell (EC) migration is a critical event during multiple physiological and pathological processes. ECs move in the plane of the endothelium to heal superficially injured blood vessels but migrate in three dimensions during angiogenesis. We herein investigate differences in these modes of movement focusing on caveolae and their defining protein caveolin-1. Using a novel approach for morphological analysis of transmigrating cells, we show that ECs exhibit a polarized distribution of caveolin-1 when traversing a filter pore. Strikingly, in these cells caveolin-1 seems to be released from caveolar structures in the cell rear and to relocalize at the cell front in a cytoplasmic form. In contrast, during planar movement caveolin-1 is concentrated at the rear of ECs, colocalizing with caveolae. The phosphorylatable Tyr14 residue of caveolin-1 is required for polarization of the protein during transmigration but does not alter polarization during planar movement. Palmitoylation of caveolin-1 is not essential for redistribution of the protein during either mode of movement. Thus, ECs migrating in three dimensions uniquely exhibit dissociation of caveolin-1 from caveolae and phosphorylation-dependent relocalization to the cell front.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC181557/

Posted on

Netrin 1 mediates spinal cord oligodendrocyte precursor dispersal

In spinal cord, oligodendrocyte precursors that give rise to myelin-forming cells originate in a restricted domain of the ventral ventricular zone. During development, these cells migrate widely throughout the spinal cord. Netrin 1 is expressed at the ventral ventricular zone during oligodendrocyte precursors emigration, and, in vitro, netrin 1 acts as chemorepellent and antagonizes platelet-derived growth factor (PDGF) chemoattraction. Oligodendrocyte precursors express the netrin receptors DCC and UNC5 and function-blocking anti-DCC antibody inhibits chemorepulsion of ventral spinal cord explants and netrin-secreting cells. In spinal cord slice preparations, addition of function-blocking anti-DCC antibody or netrin 1 dramatically inhibits oligodendrocyte precursor migration from the ventral ventricular zone. These data indicate the initial dispersal of oligodendrocyte precursors from their localized origin is guided by a chemorepellent response to netrin 1.

http://dev.biologists.org/content/130/10/2095.long