The present study investigated the effect of adrenomedullin, a novel vasorelaxant peptide, on the migration of cultured rat vascular smooth muscle cells (SMCs) by using the Boyden-chamber method. Fetal calf serum (FCS) and platelet-derived growth factor (PDGF)–BB strongly stimulated SMC migration. Adrenomedullin clearly inhibited SMC migration stimulated with 5% and 10% FCS in a concentration-dependent manner. The migration induced by 10 and 25 ng/mL PDGF-BB was also inhibited by adrenomedullin in a concentration-dependent manner. Inhibition by adrenomedullin of FCS- and PDGF-induced SMC migration was paralleled by an increase in the cellular level of cAMP. In fact, the percent increase in cAMP level was strongly correlated with the percent decrease in migration activity of SMCs after treatment with adrenomedullin. 8-Bromo cAMP, a cAMP analogue, reproduced the inhibition by adrenomedullin of FCS- and PDGF-induced SMC migration. An activator of adenylate cyclase, forskolin, also reduced FCS- and PDGF-induced SMC migration. These data indicate that adrenomedullin inhibits the migration of SMCs stimulated with FCS and PDGF, probably through a cAMP-dependent process. On the basis of these results and the finding that adrenomedullin is synthesized in and secreted from vascular endothelial cells, adrenomedullin may play a role as a local antimigration factor in some pathophysiological states.
http://circres.ahajournals.org/content/77/4/660.long

v
3 integrins in different cellular migration. Using our newly developed micro-volume chemotaxis assay, we developed an improved quantitative method to measure in vitro chemotaxis of smooth muscle or endothelial cells toward different extracellular matrix proteins. The convenience in setup and counting of migrated cells using this method allows for large capacity screening and for various research applications with other cells as well. The signal to noise ratios were in the range of 10/1, along with about 10–20% intra- or inter-assay variabilities. Using this method, we have determined that either vitronectin at 0.4 µg/well or osteopontin at 0.4 µg/well are selective