Posted on

Statins suppress THP-1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation

Macrophages secrete matrix metalloproteinase 9 (MMP-9), an enzyme that weakens the fibrous cap of atherosclerotic plaques, predisposing them to plaque rupture and subsequent ischemic events. Recent work indicates that statins strongly reduce the possibility of heart attack. Furthermore, these compounds appear to exert beneficial effects not only by lowering plasma low-density-lipoprotein cholesterol but also by directly affecting the artery wall. To evaluate whether statins influence the proinflammatory responses of monocytic cells, we studied their effects on the chemotactic migration and MMP-9 secretion of human monocytic cell line THP-1. Simvastatin dose dependently inhibited THP-1 cell migration mediated by monocyte chemoattractant protein 1, with a 50% inhibitory concentration of about 50 nM. It also inhibited bacterial lipopolysaccharide-stimulated secretion of MMP-9. The effects of simvastatin were completely reversed by mevalonate and its derivatives, farnesylpyrophosphate and geranylgeranyl pyrophosphate, but not by ubiquinone. Additional studies revealed similar but more profound inhibitory effects with L-839,867, a specific inhibitor of geranylgeranyl transferase. However, α-hydroxyfarnesyl phosphonic acid, an inhibitor of farnesyl transferase, had no effect. C3 exoenzyme, a specific inhibitor of the prenylated small signaling Rho proteins, mimicked the inhibitory effects of simvastatin and L-839,867. These data supported the role of geranylgeranylation in the migration and MMP-9 secretion of monocytes.

http://www.jleukbio.org/content/69/6/959.long

Posted on

Homocysteine induces monocyte chemoattractant protein-1 expression by activating NF-kappaB in THP-1 macrophages.

Homocysteinemia is an independent risk factor for cardiovascular disorders. The recruitment of monocytes is an important event in atherogenesis. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine that stimulates monocyte migration into the intima of arterial walls. The objective of the present study was to investigate the effect of homocysteine on MCP-1 expression in macrophages and the underlying mechanism of such effect. Human monocytic cell (THP-1)-derived macrophages were incubated with homocysteine. By nuclease protection assay and ELISA, homocysteine (0.05-0.2 mM) was shown to significantly enhance the expression of MCP-1 mRNA (up to 2.6-fold) and protein (up to 4.8-fold) in these cells. Homocysteine-induced MCP-1 expression resulted in increased monocyte chemotaxis. The increase in MCP-1 expression was associated with activation of nuclear factor (NF)-kappaB due to increased phosphorylation of the inhibitory protein (IkappaB-alpha) as well as reduced expression of IkappaB-alpha mRNA in homocysteine-treated cells. In conclusion, our results demonstrate that homocysteine, at pathological concentration, stimulates MCP-1 expression in THP-1 macrophages via NF-kappaB activation.

http://ajpheart.physiology.org/content/280/6/H2840.long