An in vitro, fluorimetric method for cellular chemotaxis and invasion has been developed using a commercially available, disposable, 96-well chamber. This 4–18 hour microtiter chamber assay has a number of important advantages over existing methods. It does not require prior labeling of cells or radioactivity, and is rapid, automatable and quantitative. Cells are quantitated by a novel actin-based fluorescence tag as reported previously (Methods in Cell Science 17: 263–270, 1995). Following quantitation, cells are easily detectable by fluorescence microscopy. In addition, this assay conserves reagents due to its low volumes in the upper and lower chambers. The assay has been optimized using cultured human lung cancer cells to identify inhibitors or activators of directed cell migration. The effects of antibodies to
V
3,
V
5, and CD44 on the chemotaxis and invasion of A549 cultured lung tumor cells are reported.
pdf available at: http://www.springerlink.com/content/wg1v6175p40wm3x0/

v
3 integrins in different cellular migration. Using our newly developed micro-volume chemotaxis assay, we developed an improved quantitative method to measure in vitro chemotaxis of smooth muscle or endothelial cells toward different extracellular matrix proteins. The convenience in setup and counting of migrated cells using this method allows for large capacity screening and for various research applications with other cells as well. The signal to noise ratios were in the range of 10/1, along with about 10–20% intra- or inter-assay variabilities. Using this method, we have determined that either vitronectin at 0.4 µg/well or osteopontin at 0.4 µg/well are selective